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A systematic extension of Ruedenberg's expansion formula is applied to 
evaluate two-electron integrals occurring in calculations on molecular structure. 
Minimum STO basis sets are used for all SCF-calculations within the framework 
of the MEDO-method (Multipole Expansion of Diatomic Overlap). The errors 
due to this approximation scheme are almost negligible compared to those 
introduced by the truncated basis set: LiH, Li 2 and N 2 are chosen as examples. 
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1. Introduction 

Large scale ab initio calculations on medium size molecules have become routine 
during the last decade. Despite their well known principal failures at the nuclei and 
at large distances, GTO's are applied most frequently in calculations on polyatomic 
molecules. In the case of basis sets with near Hartree-Fock quality the inadequate 
shape of a given single Gaussian lobe is certainly compensated by the huge number 
of functions applied. Additionally, there is good evidence from numerical 
calculations showing that STO and GTO basis sets converge indeed to the same limit 
of the independent particle model (see e.g. [1 ]). Small and medium size basis sets, as 
it is well known, are useful only for a qualitative discussion of molecular properties. 
Usually, energy values differ substantially from those at the Hartree-Fock limit and 
coincidence of numerical values for other properties is brought about by chance 
only in some rare cases. 

Since the results of numerically accurate calculations using small or medium size 
basis sets are far off from the Hartree-Fock limit anyway, time-saving approxi- 
mations within the frame of the numerical procedure seem to be well in place. The 
evaluation of two-electron integrals represents the most time-consuming step in ab 
initio calculations. Consequently, this is the appropriate part of the calculation, 
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where straightforward approximations have a chance to be effective. In GTO 
calculations the key problem is not the evaluation of the single two-electron integral, 
but the storage and handling of the huge number of numerical values. On the other 
hand, integral approximation procedures can help a lot in case of STO basis sets. 
Here the evaluation of multi-center two-electron integrals is the real bottleneck of 
the calculation. Therefore, we made an attempt to reactivate the systematic appli- 
cation of integral approximations in ab initio calculations using STO basis 
functions. 

The first and crudest approximation of two-electron integrals consists in 
a systematic neglect of differential overlap (ZDO-approximation). However, 
straightforward incorporation into the ab initio MO-formalism leads to 
rather catastrophic results. Nevertheless, the ZDO-approximation scheme is an 
essential part of the so-called "semiempirical" methods I-2-8]. Additionally, 
empirical parameters are introduced in order to compensate the brute force neglect 
of two-electron integrals. Later on, more elaborate approximations were pro- 
posed, but they also turned out to be too inaccurate for direct application to SCF- 
calculations. Two-term approximations like that of Mulliken [9] may serve as 
examples. 

More recently, Harris and Rein [10], Cizek [11, 12] and Body [13] suggested 
different many-term expansions of diatomic overlap. These approximations were 
mainly tested by comparison of individual integrals and only occasionally applied to 
full SCF-calculations. In contrast to these papers we tried a more systematic 
approach to the whole problem of approximative SCF-calculations. 

In two papers we present a systematic extension of Ruedenberg's [14] expansion 
formula. The procedure, characteristically called Multipole Expansion of Diatomic 
Overlap (MEDO), will be described in the first part. Additionally, SCF results for 
three diatomics LiH, Li 2 and N2 will be reported. A forthcoming second part [15] 
will contain calculations on a series of Other diatomic as well as polyatomic 
molecules. All results presented in these two papers have been obtained using 
minimal STO basis sets. 

2. Multipole Expansion of Diatomic Overlap (MEDO) 
Throughout this paper nuclear attraction and electron repulsion integrals are 
formulated as electrostatic interactions between charge distributions. Appro- 
priately, we use the following notation for charge distributions: 

p~S(v)=z~(v)zJ(v) v= 1, 2 (1) 

Here I and J denote the origins of the basis functions X~ and )~j. For the sake of 
clearness the double index (U) is converted into a single index (r). Now, electron 
repulsion and nuclear attraction integrals can be written as follows: 

j zA(I)z~(1)r~ 2 Zc(2)X~(2)dzl dz2= ,)f pAI3(1)p~tcD(2)r12 dr1 d'c2 (2) 
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STO's and GTO's differ in many respects. As is well known, any product of two 
Gaussian functions is just another Gaussian with different origin. This fundamental 
property of GTO's does not hold true for STO's. Therefore one is concerned with 
three- and four-center integrals, which in general cannot be evaluated by standard 
techniques. Usually, very expensive analytical or numerical integration techniques 
[ 16-26] have to be applied. The MEDO method avoids all these difficulties, because 
two-center charge distributions are approximated by a linear combination of one- 
center charge distributions: 

nAB 

P2 B= ~, Cs, pap (4) 
p = l  

In principle, this expansion formula can be improved by adding more terms. In 
practice, however, one has to choose a compromise between efficiency and accuracy. 
Accordingly, we use a fixed set of one-center charge distributions {ap} for a given 
pair of centers (A-B). The number of terms is denoted by nAB. Further details about 
the choice of {ap} will be given in Sect. 3. 

Using the identities (2), (3) one can easily demonstrate how multicenter integrals are 
approximated within the framework of the MEDO method. Applying the 
expansion series (4) to two-electron integrals, we obtain the general formula: 

p = l  q = l  

A double sum will occur only if both p~ and p~ are two-center charge distributions. 
Further simplification is possible in case one charge distribution is of one-center 
type, e.g. pcc. 

A similar expression holds for nuclear attraction integrals: 

1 p = l  a 1 
(7) 

The three formulae (5) to (7) sum up all integral approximations used here. 
Nevertheless, we are still left with the problem how to calculate the expansion 
coefficients {Cs, p}. To our knowledge two different methods have been reported in 
the literature so far. Billingsley and Bloor [27, 28] used the procedure originally 
proposed by Harris and Rein [10]. They determined the coefficients {C~,p} by a 
system of linear equations, which was derived from exact reproduction of certain 
hybrid integrals. Newton et al. [29-31J evaluated the expansion coefficients by a 
"least-square-fit" technique. In contrast to these previous methods we decided to 
use another technique, originally proposed by Cizek [11, 12]. The coefficients {Cs, p} 
are chosen such that all multipole moments of the given two-center charge 



150 O .  S t e i n h a u s e r  a n d  P.  S c h u s t e r  

distributions are reproduced exactly up to a certain order. Thereby we obtain a 
system of linear equations : 

p = l  

m u = x l y j z  k ; (U = 1,  2. �9 �9 n a b  ) 

Here i , j  and k denote integers. Using the abbreviations R , , :  (0-plm,), Ss, = (pslm,,), 
system (8) can be rewritten as a matrix equation: 

C R = S  (9) 

Inversion of the one-center multipole matrix R yields the final result: 

C = S R  -1 (10) 

In case the multipoles are appropriately selected-l inear  dependencies have to be 
a v o i d e d - t h e  inversion of the matrix R causes no numerical problems. Eq. (10) 
shows that the matrix of the expansion coefficients C equals the product of two 
multipole matrices S and R-1 .  The matrix elements {Rp, u} and {Ss,,} can be 
evaluated using standard formulae [32-35], which involve A- and B-functions only. 

3. Choice of One-Center Charge Distributions 

Obviously, efficiency and accuracy of the M E D O  approximation depend strongly 
on two types of  quantities : the expansion coefficients { Cs,,} and the set of one-center 
charge distributions (0.,}. In the previous section we described the procedure to 
determine the expansion coefficients. Now we turn to the problem how to find an 
appropriate set of  one-center charge distributions (OC's). Bearing in mind that our 
basic assumption was to use a fixed set of  OC's for a given pair of  centers (A-B), we 
start with a minimal basis ( ls  A, 2s A . . . . .  2pZA) of five STO's located on center A. 
Accounting for symmetry properties 15 distinct pairwise products of  STO's can be 
formed: 0-1 = 1 S A L S A ,  0- 2 = 2 s A l S A ;  0" 3 = 2 S A 2 S  A" �9 " 0 . 1 5  ---- 2PZA2PZA. In the same way 
we obtain for center B : 0.16 = lsBls~ �9 �9 "0.3o = 2pzB2PZB. Thus a preliminary set of  30 
OC's  results. 

Now we are still left with the problem how to choose the exponents for the individual 
STO's. For  practical purposes it is useful to distinguish four cases: 

a) The functions are located on a hydrogen nucleus. In this case the same exponent 
~ =  1.0 is used for all five functions (ls  H- - .2pz~). 

b) The center of  the five functions coincides with a nucleus of atomic number 2 to 6 
(He, Li, Be, B, C). In that case exponents determined by Slater rules are used. For  
atoms with higher atomic numbers (N, O and F) the orbital exponents derived 
f rom Slater rules were found to be inadequate for the expansion of two-electron 
integrals. Especially, the Is-functions are too steep for this purpose. Con- 
sequently, the OC's  are contracted, too much in the regions close to the centers 
and therefore the interatomic regions are described rather poorly. We tried to 
avoid this problem in the following stepwise approach. 
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c) The exponents of the 2p-functions for N, O and F have been reduced to the Slater 
value for carbon ~ 2 p  = 1.625. Furthermore, optimization procedures done for a 
number of diatomic molecules showed that the uniform exponents c~s -- ~2s = 0.8 
yield an appropriate description of SCF-results for molecules containing N, O or 
F. Calculations on polyatomic molecules confirmed this fact and it seemed that 
such a crude choice of uniform exponents is quite sufficient. 

d) For  a given pair of centers (A-B) it may occur that the atomic number of the 
nucleus A varies between 2 and 6, whereas the atomic number of nucleus B falls 
in the range 7 to 9, or the other way round. In this case the rules given in c) are 
applied likewise to both centers A, B. 

A priori one cannot assume that the preliminary set of OC's is already sufficient for 
the numerical demands we have in mind. In order to check the reliability of this set, 
SCF-calculations on several diatomics were carried out. These test calculations 
discovered an important fact: the calculated force constants showed that the 
expansion used is not able to reproduce integrals equally well at different 
internuclear distances. This deficiency indicates that the preliminary set of OC's 
describes only the regions close by the centers. Contributions from the interatomic 
regions are neglected too much. 

In principle there are two possibilities to achieve a better description of interatomic 
regions. One approach uses additional OC's, which are located between the centers. 
Such an improvement of the preliminary set causes one important difficulty. The 
total number of basic OC's becomes a quadratic function, instead of increasing 
linearly with the numbers of centers. According to our initial ideas such an increase 
is undesirable and would destroy the economic arguments in favor ot ~ the MEDO 
expansion. 

Alternatively one can use OC's with reduced orbital exponents. Again these 
additional OC's are located at the centers, but they are flatter and therefore allow a 
better description of interatomic regions. Practically, these additional OC's can be 
built up from four additional STO's (2sl, 2pxl, 2pyl, 2pzO. Again all symmetry 
allowed products are taken. The exponents (ezSl, ~2pxl �9 " �9 ~2pzl) are determined by 
multiplying the previously used exponents (gZso" " ' c~2p~o) by a uniform factor k. In 
test calculations k = 0.8 was found to be a reasonable choice. The uniform value 
k = 0.8 has been used for all molecules reported in this and the forthcoming paper, 

The use of additional OC's of the kind described above does not alter the simplicity 
and efficiency of the MEDO expansion in any respect. The only noticeable economic 
result consists in a slight increase of the factors C 1 and C2 in formulae (11) and (12) 
respectively. The extended set, composed of preliminary and additional OC's, will 
be called a standard set. This set represents a reasonable compromise between 
integral accuracy and numerical efforts. Furthermore, the standard set allows a 
balanced description of two-center charge distributions and consequently of multi- 
center integrals. We did not investigate the question of uniqueness, however. Most 
probably, many sets of OC's may work for the approximation of two-electron 
integrals equally well. 
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It should be mentioned here that the standard set of OC's is purely additive with 
respect to the number of centers. Assuming that the number of centers equals the 
number of atoms in the molecule, the total nmnber of OC's is a linear function of the 
number of  atoms: 

Noc = C1Natom (11) 

From Eq. (11) we see immediately that the total number of Coulomb integrals 
(apl%) is a quadratic function of Natom : 

Nco~, = CzNatom(N~tom + 1)/2 (12) 

The total number of expansion coefficients {Cs, p} similarly spans a quadratic 
manifold: 

Ncof= C aNbasis(Nbasi s + 1)/2 (13) 

The symbol Nb.si ~ denotes the size of the molecular basis set. 

Summing up the previous arguments we arrive at the final conclusion : Within the 
framework of the MEDO method three- and four-center integrals are approximated 
by a linear combination of Coulomb integrals. Thus the huge number of two- 
electron integrals - this number rises with N 4 - can be split up into sums over two 

basis 
quadratic manifolds, the expansion coefficients {Cs..} and the Coulomb integrals 
(%]%). Obviously, this advantage of an integral approximation procedure 
becomes more and more important with increasing size of the molecules considered. 
Furthermore, the Coulomb integrals required belong to the simplest class of two- 
electron integrals. Corresponding formulae 1-32] involve elementary functions only. 

4. Comparison of SCF-Results obtained with and without the MEDO Approximation 

So far, we have shown how multicenter integrals can be approximated in a simple 
and consistent way. The next step would be to analyze critically the accuracy 
obtained for various types of nuclear attraction or electron repulsion integrals. On 
the other hand, the values of basic interest are the final SCF-results. The evaluation 
of integrals is only one part of the whole SCF procedure. Furthermore, it is quite 
obvious that a direct comparison of SCF-results will show all systematic and 
unsystematic errors introduced by the MEDO approximation. Therefore we 
omitted the tedious task of analyzing the. huge number of basic integrals and turned 
to a direct comparison of  SCF calculations with and without integral approxi- 
mations. 

The three diatomic molecules LiH, Li 2 and N 2 have been selected for a critical test of 
the MEDO method. In order to avoid discrepancies caused by different geometries 
or basis sets, we have used quite the same geometries and basis sets as reported in 
Ref. [36]. Additionally, the exponents of the basis functions were determined by 
Slater rules. In Table 1 orbital energies, overlap populations, dipole moments and 
atomic charges are listed. For  LiH and N 2 orbital energies of near Hartree-Fock 
quality are given too. Thus errors due to the truncation of the basis set can be figured 
out. 
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Table 2. Total energies, minimum geometries and harmonic force constants for LiH, Li 2 and N2 

LiH Li 2 N 2 

Total energy SCF-MEDO a - 7.96 - 14.84 
at experimental SCF b - 7.97 - 14.84 
geometry (a.u.) SCF-HFL c - 7.99 - 14.87 

EXP d 8.07 - 14.99 

Minimum SCF-MEDO a 1.630 2.877 
geometries (A) SCF b 1.615 2.828 

SCF-HFL c 1.605 2.783 
EXP d 1.595 2.672 

Harmonic f o r c e  SCF-MEDO a 1.180 0.2385 
SCF b 1.201 0.2347 

constants SCF-HFL c 1.066 0.2198 
(mdyn/A) EXP a 1.026 0.2552 

- 108.56 
- 108.57 
-108.99 
- 109.59 

1.116 
1.104 
1.065 
1.098 

32.51 
36.42 
30.73 
22.94 

This work. 
u Values taken from Ref. [37]. 
c Values taken from Ref. [38], [39], [40] respectively. 
d Experimental values taken from Ref. [37]. 

Most  integral  approx imat ions  suffer f rom the inabil i ty  to yield a sufficient integral  
accuracy for a longer range of in teratomic distances. It  was our  principal  aim to 
develop an approx imat ion  scheme which produces a sufficient accuracy at least in 

the harmonic  region. Therefore we calculated the total  energy of  each molecule for 
five different points  a round  the energy min imum.  Then  polynomials  of third degree 
were f i t ted to these five energy values. F r o m  this fit m i n i m u m  geometries and 
ha rmonic  force constants  were derived. Results are summarized in Table 2. In  order 
to yield a critical compar ison,  corresponding values taken from the li terature are 
listed too. For  each molecule and  each proper ty  four values are given. The first row 

conta ins  values obta ined  by the M E D O  method,  whereas the second row 
corresponds to SCF calculat ions using no integral approximat ions  [37]. Thus  the 
errors in t roduced by the M E D O  approx imat ion  can be figured out directly. The 
values given in the third row are taken from SCF calculat ions of near  Har t ree-Fock 
qual i ty [38, 39, 40]. Final ly,  experimental  values are listed in order to complete the 

story. 

5 .  D i s c u s s i o n  

F r o m  the numerica l  point  of  view the method  of integral approx imat ion  chosen 
here seems to be very satisfactory. All errors in t roduced thereby are by far smaller 
than  those result ing f rom the use of unsatura ted ,  m i n i m u m  basis sets. Since the 
results of  m i n i m u m  basis set SCF calculat ions are usual ly  far off f rom the Hartree-  
Fock  limit anyway,  the approximat ions  proposed do not  in t roduce any serious 
decrease in reliability. In  case of LiH and  Li2 the results of SCF-  and S C F - M E D O  
calculat ions are a lmost  completely identical. However,  a slight reduct ion of 
accuracy can be observed for molecules with more electrons in the valance shell. N2 



Multipole Expansion of Diatomic Overlap 155 

may  be regarded as an illustrative example. Nevertheless, even in this critical case 
total energies, orbital energies and eigenvectors are fairly reproduced.  N o  errors 
larger than 10 ~o of  absolute value were found. For  short we did not  present the 
eigenvectors here, but  the results of  Mulliken's  overlap popula t ion analysis are 
listed. 

Fur thermore,  equilibrium geometries and force constants  are reproduced in good 
agreement with results obtained without  any integral approximations.  As stated 
above, this point  is extremely impor tant  and represents a critical test for the 
applicability of  a given approximat ion scheme to general calculations on molecules. 
Most  methods proposed so far turned out  to be useful only within a very small range 
of  internuclear distances and therefore failed to give correct  energy minima and 
force constants.  As expected the SCF force constants  differ substantially f rom 
experimental values. 

Finally, we want  to stress a number  o f  methodological  features o f  our  integral 
approximat ion  scheme: 

1) The set of  OC ' s  applied for the expansion of  diatomic overlap has been defined 
once for all calculations reported. N o  adjustment has been made for special 
molecules or  types o f  interactions as in previous papers, e.g. [13]. 

2) Our  choice of  OC 's  is by no means unique and we feel that  further research might 
lead to even more  accurate reproduct ion o f  integral values, which was not  
necessary for our  purpose here. Additionally, the number  of  OC's  may  be 
increased to yield higher accuracy, if desired. 

3) It  seems to bejustified to bring again one o f  our initial arguments.  N o  matter  how 
large the OC basis may  be, two-electron integrals are always summed up f rom 
quadratic manifolds,  expansion coefficients and Cou lomb integrals. This fact 
should be contrasted with the well known N4-problem of  direct integration 
procedures.  
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